Abstract

Serum deprivation-response protein (SDPR), a phosphatidylserine-binding protein, which is known to have a promising role in caveolar biogenesis and morphology. However, its function in hepatocellular carcinoma (HCC) was still largely unknown. In this study, we discussed the characterization and identification of SDPR, and to present it as a novel apoptosis candidate in the incidence of HCC. We identified 81 HCC cases with lower SDPR expression in the tumor tissues with the help of qRT-PCR assay, and lower SDPR expression was potentially associated with poor prognostication. The phenotypic assays revealed that cell proliferation, invasion, and migration were profoundly connected with SDPR, both in vivo and in vitro. The data obtained from the gene set enrichment analysis (GSEA) carried out on the liver hepatocellular carcinoma (LIHC), and also The Cancer Genome Atlas (TCGA) findings indicated that SDPR was involved in apoptosis and flow cytometry experiments further confirmed this. Furthermore, we identified the interaction between SDPR and apoptosis signal-regulating kinase 1 (ASK1), which facilitated the ASK1 N-terminus-mediated dimerization and increased ASK1-mediated signaling, thereby activating the JNK/p38 mitogen-activated protein kinases (MAPKs) and finally enhanced cell apoptosis. Overall, this work identified SDPR as a tumor suppressor, because it promoted apoptosis by activating ASK1-JNK/p38 MAPK pathways in HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.