Abstract

This study aimed to investigate whether the previously described differentiating islet-like aggregates of human pancreatic adenocarcinoma cells (PANC-1) develop glucose response and exhibit intercellular communication. Fura 2-loaded PANC-1 cells in serum-free medium were assayed for changes in cytosolic free calcium ([Ca]i) induced by depolarization, tolbutamide inhibition of K(ATP) channels, or glucose. Dye transfer, assayed by confocal microscopy or by FACS, was used to detect intercellular communication. Changes in messenger RNA (mRNA) expression of genes of interest were assessed by quantitative real-time polymerase chain reaction. Proliferation was assayed by the MTT method. Serum-deprived PANC-1 cell aggregates developed [Ca]i response to KCl, tolbutamide, or glucose. These responses were accompanied by 5-fold increase in glucokinase mRNA level and, to a lesser extent, of mRNAs for K(ATP) and L-type calcium channels, as well as increase in mRNA levels of glucagon and somatostatin. Trypsin, a proteinase-activated receptor 2 agonist previously shown to enhance aggregation, modestly improved [Ca]i response to glucose. Glucose-induced coordinated [Ca]i oscillations and dye transfer demonstrated the emergence of intercellular communication. These findings suggest that PANC-1 cells, a pancreatic adenocarcinoma cell line, can be induced to express a differentiated phenotype in which cells exhibit response to glucose and form a functional syncytium similar to those observed in pancreatic islets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call