Abstract

BackgroundHow nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line.MethodsThe viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test (n = 3, significance level 0.10, D > 0.642) and/or ANOVA (n = 3, p < 0.05).ResultsThe results showed that low serum doses or serum depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5’-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells.ConclusionsThis comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that serum depletion induces specific changes in protein expression concordant with main cell metabolic adaptations and EMT, resembling the progression to a malignant phenotype.Electronic supplementary materialThe online version of this article (doi:10.1186/s11658-016-0018-9) contains supplementary material, which is available to authorized users.

Highlights

  • How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood

  • At lower fetal bovine serum (FBS) doses, HTR-8/SVneo cells behave to what is seen in serum-depleted conditions, with a significantly higher proliferation rate compared to 0.5 % FBS culture at 48 h (p < 0.05 to 0 % FBS; p < 0.001 to 0.1 % FBS)

  • In conclusion, our results suggest a phenotype change related to malignant progression, in response to serum depletion on a first trimester human trophoblast model

Read more

Summary

Introduction

How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. The human placenta is composed of trophoblast cells. The correct development of the embryo depends on trophoblast function. These cells invade the uterus and remodel the maternal spiral arteries. The intrauterine environment of the first trimester plays an important role in the regulation of trophoblast function and capacities [1]. Several trophoblast cell lines have been developed to study trophoblast function in vitro. One example is the immortalized extravillous trophoblast HTR-8/SVneo cell line, which was originally obtained from a first trimester human placenta

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call