Abstract

Exercise can be defined as normal stress stimulating body functions. Some reports suggest lactate as a stimulator of cortisol levels, while creatinine varies according to the amount of muscle tissue. In the present study we investigated the relationship between creatinine, serum lactate concentration and cortisol levels in training horses. Twenty-three Thoroughbred fillies were used, divided into 3 groups according to age and training protocol: G1, 1-2 years of age (N=7) on pasture, G2, 2-3 years (N=9) starting to be mounted, and G3, 3-4 years (N=7) racing at the Jockey Club. Blood samples were collected weekly during a six-month period at about 1:00 p.m. while the animals were resting. Cortisol was quantified with a commercial kit (Coat-a Count®) and serum creatinine and lactate were evaluated with an autoanalyzer with commercial reagents. Data were evaluated using non-parametric statistical tests, with the level of significance set at P< 0.05. Cortisol concentrations were 149a + 7, 126b + 6, and 101c + 5 nmol/l, lactate concentrations were 2.1a + 0.1, 2.0a + 0.1, and 1.75b + 0.1 mmol/l, and creatinine concentrations were 125a + 2, 132a + 2 145b + 3 mumol/l in G1, G2 and G3, respectively. Only G2 showed a low but significant positive correlation of cortisol with lactate and a negative correlation of cortisol with creatinine levels. It was possible to conclude that cortisol, lactate and creatinine varied during horse aging and physical conditioning. The decrease of cortisol concentration (G2) suggests that the better physical condition acquired during training led to the increase of creatinine concentration, possibly related to muscle mass. The lower cortisol and lactate concentrations observed in G3 animals may have been due to greater muscle mass inducing an increase in creatinine concentrations or changes in muscle fiber type during training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.