Abstract

To advance our understanding of mechanisms involved in tumor progression/regression, a CT26 colorectal mouse model treated intra-tumorally with DISC-herpes simplex virus as immunotherapy was used in the discovery and validation phases to investigate and ultimately identify biomarkers correlating with the failure to respond to immunotherapy. For the discovery phase, serum protein/peptide profiles of a retrospective sample collection (total n=70) were analyzed using MALDI-TOF-MS combined with artificial neural networks. Following identification of the key predictive peptides using ESI-MS/MS, validation of the identified proteins was carried out on serum and tissues collected in an independent sample set (total n=60). Artificial neural network analysis resulted in four discriminatory peaks with an accuracy of 86%, sensitivity of 90% and specificity of 81% between the progressor/regressor groups. Three of the identified discriminatory markers were upregulated and demonstrated a positive correlation with tumor progression following DISC-herpes simplex virus therapy. Immunovalidation studies corroborated the MALDI-TOF-MS findings. Immunohistochemistry revealed that serum amyloid A-1 and serum amyloid P produced in the liver localized intracellularly in CT26 tumor tissue. MALDI-TOF-MS and BI analysis of the serum proteome of tumor-bearer mice undergoing immunotherapy, identified biomarkers associating with "failure to respond" and biological arrays confirmed these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.