Abstract

In this study, we performed a proteomic analysis of sera from stage I gastric cancer patients using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and established a diagnostic model for the early diagnosis of stage I gastric cancer. Serum samples from 169 gastric cancer patients and 83 age- and gender-matched healthy individuals were analyzed by SELDI-TOF-MS ProteinChip array technology. The SELDI-TOF-MS spectral data were analyzed using the Biomarker Wizard™ and Biomarker Patterns™ software to find differential proteins and develop a classification tree for gastric cancer. A total of 34 mass peaks were identified. Six peaks at a mass-to-charge ratio (m/z) of 2873, 3163, 4526, 5762, 6121 and 7778 were used to construct the diagnostic model. The model effectively distinguished gastric cancer samples from control samples, achieving a sensitivity and specificity of 93.49 and 91.57%, respectively. In addition, we identified 3 of the 6 protein peaks at 2873, 6121 and 7778 m/z, which distinguished between stage I and stage II/III/IV gastric cancer. The model had an accuracy of 88.89% for the identification of stage I gastric cancer. In conclusion, the diagnostic model for the detection of serum proteins by SELDI-TOF-MS ProteinChip array technology correctly distinguishes gastric cancer from healthy samples, and has the ability to screen and distinguish between early gastric cancer from advanced gastric cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call