Abstract
ObjectiveTo evaluate the relationship between oxidative stress and NGAL levels in blood and urine of amateur athletes after participating in a 100 km ultramarathon.MethodologyThe sample was composed of seven athletes, submitted to anthropometric assessment, cardiopulmonary exercise test, collection of urine and blood, measurement of body weight. The rate of perceived exertion (RPE), competition duration, heart rate (HR), energy expenditure and oxygen consumption (V’O2”) were also measured during the event. The energy consumption during the race was verified at its end. The analyses were based on the means (M) and respective standard deviations (SD), with statistical significance set at 5% (p < 0.05). Paired t-test was used for comparison between the periods before and after the competition, and Pearson’s correlation coefficient was used to measure the linear correlation between quantitative variables.ResultsBody mass index (BMI) of the sample was 25.75 kg/m2 ± 3.20, body fat percentage 18.54% ± 4.35% and V’O2”max 48.87% ± 4.78. Glucose, cortisol, and neutrophil gelatinase-associated lipocalin (NGAL) (p < 0.01) as well as glutathione peroxidase (GPx) active were higher after the race when compared to basal values. Moreover, lactate, creatinine, microalbuminuria, and glomerular filtration rate (GFR) (p < 0.001) were also higher after the race. After the competition, there was a significant correlation only between serum NGAL and creatinine, which was classified as strong and positive (r: 0.77; p < 0.05). There was a significant reduction (p < 0.05) of body weight after the event (72.40 kg ± 9.78) compared to before it (73.98 kg ± 10.25). In addition, we found an increase of RPE (p < 0.001) after the race. The competition lasted 820.60 min (±117.00), with a 127.85 bpm (±12.02) HR, a 2209.72 kcal ± 951.97 energy consumption, 7837.16 kcal ± 195.71 energy expenditure, and 28.78 ml/kg/min–1 (±4.66) relative V’O2”max.ConclusionThe lack of correlation between oxidative stress biomarkers and serum and urine NGAL suggests that NGAL is more sensitive to inflammatory processes than to ROS levels.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.