Abstract

In response to arterial intimal injury vascular smooth muscle cells (VSMCs) within the vessel wall proliferate upon exposure to growth factors, accumulate, and form a neointima that can occlude the vessel lumen. Serum and glucocorticoid inducible kinase 1 (SGK1) is a growth factor-responsive kinase; however its role in VSMC proliferation is not fully understood. Here, we examined growth factor-dependent regulation of SGK1 and defined a molecular role for SGK1 in stimulation of VSMC proliferation. We found that stimulation of VSMCs with the pro-proliferative growth factor, platelet-derived growth factor BB (PDGF) significantly increased SGK1 mRNA, protein, and kinase activity in aortic VSMCs in vitro. To test the hypothesis that activation of SGK1 activity promotes VSMC proliferation, we examined the effects of stable expression of constitutively active (S422D) and kinase-defective (S422A) mutants of SGK1 on VSMC growth. We found that activation of SGK1 increased, whereas interference of SGK1 signaling inhibited VSMC growth in vitro. Consistent with these findings, expression of the S422D mutant augmented both basal and PDGF-induced BrdU uptake in VSMCs. Conversely, PDGF-induced BrdU uptake was attenuated in VSMCs expressing S422A. Furthermore, we determined that activated SGK1 enhanced basal and PDGF-dependent G1→S cell cycle transition, whereas dominant-negative SGK1 abrogated G1→S cell cycle transition under similar conditions. Downstream signaling by active SGK1 induced basal and PDGF-induced phosphorylation of glycogen synthase kinase 3β, an effect which was attenuated when SGK1 activity was blocked by expression of the kinase-defective mutant, S422A. We also found that transfection of S422D enhanced β-catenin-nuclear localization and activation of the TOP/Flash and cyclin D1 transcriptional reporters. These effects were significantly blunted in VSMCs transfected with the S422A mutant. Our results provide compelling evidence of a role for SGK1 in stimulation of arterial VSMC growth via regulation of β-catenin dynamics and implicate SGK1 in the progression of intimal narrowing following arterial injury. Hence, the findings presented here point to inhibition of SGK1 activity as a novel therapeutic approach for the treatment of occlusive vascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.