Abstract

The hippocampus has a well-known role in mediating learning and memory, and its function can be directly regulated by both stress and glucocorticoid receptor activation. Hippocampal contributions to learning are thought to be dependent on changes in the plasticity of synapses within specific subregions, and these functional changes are accompanied by morphological changes in the number and shape of dendritic spines, the physical correlates of these glutamatergic synapses. Serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates dendritic spine morphology in the prefrontal cortex, and modulation of SGK1 expression in mouse hippocampus regulates learning. However, the role of SGK1 in dendritic spine morphology within the CA1 and dentate gyrus regions of the hippocampus are unknown. Thus, herpes simplex viral vectors expressing GFP and various SGK1 constructs, including wild type SGK1, a catalytically inactive version of SGK1 (K127Q), and a phospho-defective version of SGK1 (S78A), were infused into the hippocampus of adult mice and confocal fluorescent microscopy was used to visualize dendritic spines. We show that increasing expression of SGK1 in the dentate gyrus increased the total number of spines, driven primarily by an increase in mushroom spines, while decreasing SGK1 activity (K127Q) in the CA1 region increased the total number of dendritic spines, driven by a significant increase in mushroom and stubby spines. The differential effects of SGK1 in these regions may be mediated by the interactions of SGK1 with multiple pathways required for spine formation and stability. As the formation of mature synapses is a crucial component of learning and memory, this indicates that SGK1 is a potential target in the pathway underlying stress-associated changes in cognition and memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call