Abstract
According to a previously described method, alginate beads were prepared from a Na-alginate solution containing propylene glycol alginate (PGA) and human serum albumin (HSA). The solution was added dropwise to a CaCl2 solution. The beads were treated with NaOH, which started the formation of amide bonds between HSA and PGA at the periphery, giving a membrane. Batches of beads with increasingly thick membranes were prepared using growing concentrations of NaOH, and studied with a texture analyser. When raising NaOH concentration, the rupture strength progressively increased, and the resistance strength to a deformation of 50% of total height also increased before slightly decreasing for the highest NaOH concentration. Variations of bead elasticity were also observed. When the beads were prepared with saline reducing gelation time from 10 to 5 min, and reaction time from 15 to 5 min, mechanical properties varied more progressively with the NaOH concentration, while the results became more reproducible. A series of assays conducted with 0.01 M NaOH confirmed the importance of using a short gelation time, and saline rather than water. Stability assays were also performed. The results were compared to those of alginate-polylysine coated beads and showed the interest of the transacylation method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.