Abstract

Distinct diagnosis between Lung cancer (LC) and gastric cancer (GC) according to the same biomarkers (e.g. aldehydes) in exhaled breath based on surface-enhanced Raman spectroscopy (SERS) remains a challenge in current studies. Here, an accurate diagnosis of LC and GC is demonstrated, using artificial intelligence technologies (AI) based on SERS spectrum of exhaled breath in plasmonic metal organic frameworks nanoparticle (PMN) film. In the PMN film with optimal structure parameters, 1780 SERS spectra are collected, in which 940 spectra come from healthy people (n = 49), another 440 come from LC patients (n = 22) and the rest 400 come from GC patients (n = 8). The SERS spectra are trained through artificial neural network (ANN) model with the deep learning (DL) algorithm, and the result exhibits a good identification accuracy of LC and GC with an accuracy over 89 %. Furthermore, combined with information of SERS peaks, the data mining in ANN model is successfully employed to explore the subtle compositional difference in exhaled breath from healthy people (H) and L/GC patients. This work achieves excellent noninvasive diagnosis of multiple cancer diseases in breath analysis and provides a new avenue to explore the feature of disease based on SERS spectrum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call