Abstract

Various flexible SERS sensors have attracted widespread concern in performing the direct identification of the analytes adsorbed on arbitrary surfaces. Here, a sample method was proposed to integrate plasmonic nanoparticles into polydimethylsiloxane (PDMS) to fabricate flexible substrate for the decoration of silver nanoparticles (AgNPs). The flexible SERS sensor based on AgNPs/AgNPs-PDMS offers highly sensitive Raman detection with enhancement factor up to 8.3 × 109, which can be attributed to the integrative effects from both the increase of the light absorption of the embedded AgNPs in PDMS substrate and the EM enhancement from the adjacent top-top, bottom-bottom and top-bottom AgNPs. After undergoing the cyclic mechanical deformation, the SERS substrate still maintains high mechanical stability and stable SERS signals. However, upon stretching the flexible substrate, there was an amusing phenomenon that SERS signals can be highly increased, which results from that the reduction of lateral nanogaps between top and bottom of the PDMS boundary strengthens the trigger of the plasmon coupling as demonstrated by the simulated result. This result reveals that the tuning and the coupling of the electromagnetic fields can be effectively controlled by the macroscopic mechanical solicitation. That will have an important significance for practical applications in strain-dependent sensors and detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.