Abstract

Surface-enhanced Raman scattering (SERS) at 676.44 nm and 1064 nm excitation wavelengths was used to investigate chemical transformation of single-walled carbon nanotubes (SWNTs) deposited on a gold support. Sulfuric acid was used as the chemical reagent. Special attention was paid to the changes in the Raman bands associated to radial and tangential vibration modes. Partial restoration of the Raman spectra by a subsequent alkaline treatment indicates a transformation with a certain degree of reversibility. The recovery reaction achieved with a 0.5 M KOH solution showed that the variations of tangential and radial band groups are not correlated. The intensity changes of the radial bands is a principal indicator for the chemical transformation of the SWNTs. Particular attention was paid to radial bands at 164 and 176 cm −1, observed with 1064 nm and 676.44 nm excitation wavelength, respectively, and their 14 cm −1 up-shifted replicas i.e. the bands at 178 and 190 cm −1. A different behavior of these bands in the anti-Stokes side was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.