Abstract
Advances in precision medical diagnostics require accurate and sensitive characterization of pathogens. In particular, health conditions associated with protein misfolding require an identification of proteinaceous amyloid fibrils or their precursors. These pathogenic entities express specific molecular structures, which require ultra-sensitive, molecular-level detection methods. A potentially transformative technique termed nanoplasmonics employs electro-optical phenomena in the vicinity of specially engineered metal nanostructures. A signature application of nanoplasmonics exploits enhancement of inelastic scattering of light in specific locations near metallic nanostructures, known as surface-enhanced Raman scattering (SERS). We applied SERS complemented with confocal microscopy imaging for ultra-sensitive, non-invasive, and label-free characterization of the fungal prion HET-s (218–289) as a model for β-sheet rich amyloid structures. This characterization employed Au-coated dielectric supports as plasmonic substrates. After confirming the formation of HET-s fibrils at both pH 7.5 and 2.8 using negative staining transmission electron microscopy, we subjected the fibril-containing solutions to multimodal analysis using confocal microscopy and SERS. The SERS spectral fingerprints from all HET-s samples expressed vibrational markers for β-structure, unstructured backbone, and aromatic side-chains. However, relative intensities of major SERS bands were pronouncedly different for the two pH levels. We have analyzed potential origins of the most pronounced SERS bands and proposed hypothetical mechanistic models that could explain the observed SERS fingerprints from HET-s fibrils grown at pH 7.5 and 2.8.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.