Abstract

This Article introduces surface-enhanced Raman scattering (SERS) orientational imaging as a powerful far-field optical technique for determining the in-plane and out-of-plane orientations of SERS-active nanoparticle dimers. Optical images of Rhodamine 6G (R6G) SERS emission patterns are measured and correlated with atomic force microscopy (AFM) images of the associated SERS-active silver nanoparticle dimers. The AFM is used to measure individual silver nanoparticle dimer orientations and height asymmetry, defining in-plane and out-of-plane angles associated with the dimer geometry. Theoretical emission pattern images based on these angles are generated using a simple dipole emission model and show excellent agreement with the experimental emission patterns. This technique provides a rapid all-optical technique to analyze the orientation of SERS active nanoparticle dimers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.