Abstract

Surface-enhanced Raman scattering (SERS) spectroscopy as a powerful tool has been used to explore different catalysis degradation reactions, whereas some drawbacks caused by ferric ions still exist in the current SERS monitoring of the Fenton reaction process. In this work, microfluidic droplet- and alginate microparticle-based methods were, respectively, applied to realize SERS monitoring of the Fenton degradation process in a relatively stable environment, which benefited from reduction of the loss of ferrous ions and the aggregation of the SERS substrate. As expected, the spectroscopic evidence at the molecular level directly revealed the degradation mechanism of rhodamine dyes, showing that the chemical bonds between xanthene and carboxybenzene broke continuously during the reaction. Afterward, the degradation mechanism determined by SERS was verified via mass spectrometry detection, which confirmed the validity of the SERS-based method. More broadly, the microfluidic droplet- and microparticle-based methods are potentially applicable for SERS monitoring of more Fenton degradation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.