Abstract

AbstractClusters of silver nanoparticles are generated by the thermally initiated reduction of silver carboxylates (long‐chain fatty acids) in the thin polymer films. The size, shape, and aggregation of these nanoparticles are affected by the reduction reaction in the presence of capping agents. In order to understand the mechanism(s) controlling the silver structure formation, it is essential to understand the surface coordination chemistry occurring during this process. We now report the first application of surface‐enhanced Raman spectroscopy (SERS) to directly characterize adsorbates on the surfaces of silver nanoparticles within a thin film imaging construction containing multiple components. In addition, SERS investigation of model silver substrates was used to confirm the identify of specific adsorbates of silver complexes. This is a powerful tool for revealing the chemistry involved with the control of silver nanoparticle aggregation during thermally induced metallic silver formation within thin films. Both the catechol‐reducing agent and the phthalazinone (PAZ) particle aggregation agent are observed on the metallic silver surface at the initial particle formation and during its crystal growth. However, careful attention to excitation wavelength is required in order to observe all the surface species. PAZ appears to be more effective at stabilizing individual silver particles than other aggregation agents investigated. An understanding of the roles of the aggregation/reducing agents in the growth and aggregation of silver nanoparticles is important for preparing different types of silver particles for specific applications including silver‐based thermal imaging systems. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.