Abstract

Microfluidic technologies have emerged as advanced tools for surface‐enhanced Raman spectroscopy (SERS). They have proved to be particularly appealing for in situ and real‐time detection of analytes at extremely low concentrations and down to the 10 × 10−15 m level. However, the ability to prepare reconfigurable and reusable devices endowing multiple detection capabilities is an unresolved challenge. Herein, a microfluidic‐based method that allows an extraordinary spatial control over the localization of multiple active SERS substrates in a single microfluidic channel is presented. It is shown that this technology provides for exquisite control over analyte transport to specific detection points, while avoiding cross‐contamination; a feature that enables the simultaneous detection of multiple analytes within the same microfluidic channel. Additionally, it is demonstrated that the SERS substrates can be rationally designed in a straightforward manner and that they allow for the detection of single molecules (at concentrations as low as 10−14 m). Finally, it is shown that rapid etching and reconstruction of SERS substrates provides for reconfigurable and reusable operation.

Highlights

  • This page was generated automatically upon download from the ETH Zurich Research Collection

  • Microfluidic technologies have emerged as advanced tools for SERS substrates.[6,7,8]

  • It is shown that this technology provides for exquisite control over analyte transport to specific detection points, while avoiding cross-contamination; a feature that enables the simultaneous detection of multiple analytes within the same microfluidic channel

Read more

Summary

Journal Article

This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use

ETH Library
Experimental Section
Findings
Conflict of Interest
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.