Abstract

Aflatoxin B1 (AFB1) is a prevalent contaminant in maize, posing significant threats to human health. This study designed AuAg Janus NPs with intrinsic Raman signals as signal probes and SiO2@AgNPs as capture probes. The two were coupled through complementary base pairing to ensure the ordered, controlled distribution of noble metal nanoparticles. The AuAg Janus NPs and the highly stable SiO2 carrier is expected to avoid the adverse effects on stability caused by using signal molecules and the formation of random aggregates when using the noble metal nanoparticle gap effect to concentrate on the electromagnetic field. This study improved the negative impact of AgNPs' high surface energy on their uniformity, while enhancing the pH adaptability of AuAg Janus NPs. In the presence of AFB1, the composite disintegrates, and the SERS intensity showed a negative correlation with AFB1 concentration, enabling highly sensitive and stable detection of AFB1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.