Abstract
The accurate detection of Staphylococcus aureus enterotoxins (SEs) is vital for food safety owing to their high pathogenicity, which may be performed with surface-enhanced Raman scattering (SERS) if SERS-active nanostructures are used. Herein, a Au-Ag Janus nanoparticle (NPs)/perovskite composite-engineered SERS immunoassay was developed for SEC detection. Plasmonic Au-Ag Janus NPs demonstrated inherent SERS activity from the 2-mercaptobenzoimidazole-5-carboxylic acid ligands. CsPbBr3@mesoporous silica nanomaterials (MSNs) were prepared and transformed into CsPb2Br5@MSNs in the aqueous phase. Paired SEC antibody-antigen-driven plasmonic Au-Ag Janus NP-CsPb2Br5@MSN composites were prepared. They showed amplified SERS activity, attributed to the depressed plasmonic decay due to electromagnetic field enhancement and the electron transfer mechanism. A positive relationship was established between SERS signals of composites and the SEC concentration. An additive-free SERS immunoassay was developed for simple, sensitive, and reproducible SEC detection. This study will be extended to develop multiple additive-free SERS-active plasmonic NP/perovskite composites that will open up the possibility of exploring more SERS detection probes for food safety monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.