Abstract
Inspired by the silent gliding feather of owl wings, the trailing edge of the duct of a pump-jet propulsor was designed with a similar serrated structure in order to reduce noise generation. Two distinct serrated structures were proposed and evaluated using the detached eddy simulation method with the shear stress transport k−ω turbulence model. The findings indicated that while the hydrodynamic efficiency changed within 1% upon the inclusion of the serrated trailing edge, a significant alteration existed in vortex structures of the wake. More horseshoe and secondary vortices were generated since large-scale vortices induced by the duct were disrupted circumferentially. This phenomenon expedited the distortion and mixing of trailing-edge vortices, causing flow instability. Furthermore, the serrated trailing-edge structure led to noise reduction. Particularly in the 0–1000 Hz range, the sound pressure level behind the duct showed a maximum reduction of 4.43 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.