Abstract

Tensile tests were performed on specimens in quenched and tempered and thermally aged conditions over a wide temperature range (300–873 K) to assess the occurrence of serrated flow, a manifestation of dynamic strain aging (DSA), in 9Cr–1Mo ferritic steel, with an emphasis on the influence of prior thermal aging on serrated yielding. The alloy exhibited jerky/serrated flow in the load–elongation curves at intermediate temperatures. Types A, B, and C serrations were observed, depending on the test temperature and applied strain rate. The apparent activation energy of 83 kJ mol-1 measured for serrated flow suggests that diffusion of an interstitial solute such as carbon is responsible for dynamic strain aging in 9Cr–1Mo steel. Prior thermal aging at 793 K for 5000 h and at 873 K for 1000 and 5000 h resulted in a significant decrease in the height of serrations, i.e. the magnitude of the stress drop, as well as an increase in the critical strain for the onset of serrations. Both of these observations indicate reduced propensity to DSA as a result of increased precipitate sinks as well as a reduced carbon concentration in solid solution owing to an increased density of carbides in the thermally aged conditions. Reduced propensity to DSA resulted in a significant reduction in the strength values at intermediate temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.