Abstract

Instrumented nanoindentation tests were used to investigate the mechanical properties of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass. The corresponding loading strain rates were ranged from 0.002 s−1, 0.02 s−1 to 0.2 s−1. Plastic flow of this material exhibited remarkable serrations at low strain rates and increasingly became weakening until disappearance with increasing indentation strain rate, implying strong rate sensitivity. A significant pile-up around the indents was observed through atomic force microscopy, which suggested a highly localized plastic deformation. Mechanism governing the deformation was tentatively discussed in terms of the increasing process of free volume with a negligible temperature rise under low strain rate, which well explained the declining trend of elastic modulus and hardness with an increase of indentation depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.