Abstract

Abstract Here we present an improved algorithm to model the serpentinization process in planetesimals in the early solar system. Although it is hypothesized that serpentinization-like reactions played an important role in the thermal evolution of planetesimals, few and restricted models are available in this topic. These processes may be important, as the materials involved were abundant in these objects. Our model is based on the model by Góbi & Kereszturi and contains improvements in the consideration of heat capacities and lithospheric pressure and in the calculation of the amount of interfacial water. Comparison of our results with previous calculations shows that there are significant differences in, e.g., the serpentinization time—the time necessary to consume most of the reactants at specific initial conditions—or the amount of heat produced by this process. In a simple application we show that in icy bodies, under some realistic conditions, below the melting point of water ice, serpentinization reaction using interfacial water may be able to proceed and eventually push the local temperature above the melting point to start a “runaway” serpentinization. According to our calculations in objects with radii R ≳ 200 km, serpentinization might have quickly reformed nearly the whole interior of these bodies in the early solar system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.