Abstract

AbstractMost serpentinitized peridotite in orogenic belts is derived from oceanic lithosphere, but the emplacement mechanisms of these rocks vary greatly, as illustrated by the nature of these rock bodies and their contacts. The diverse emplacement mechanisms have important implications for connecting ophiolitic rock occurrences to large‐scale orogenic processes. In the California Cordillera, the largest bodies of ultramafic rocks are parts of ophiolite sheets, such as the Coast Range ophiolite (CRO), that were part of the upper plate of an oceanic subduction system. Such units differ from smaller bodies within subduction complexes such as the Franciscan Complex that were transferred from the subducting plate to the subduction complex during accretion. Some intra‐subduction complex ultramafic rocks occur as nearly block‐free sheets within the Franciscan Complex, and as a part of mafic–ultramafic imbricates or broken formations within the Shoo Fly Complex of the northern Sierra Nevada. Franciscan Complex serpentinite also occurs as sedimentary serpentinite mélange that was partly subducted after deposition in the trench via submarine sliding. Such mélanges include blocks that record older and higher grade metamorphism than the matrix. Sedimentary serpentinite mélange that includes high‐pressure metamorphic blocks is also found in the basal Great Valley Group forearc basin deposits depositionally overlie the CRO. Distinguishing the different serpentinite origins is difficult in the California Cordillera even though a terminal continental collision did not affect this orogenic belt. In more typical orogenic belts with greater post‐subduction disruption, distinction between the types of serpentinite occurrences presents a greater challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call