Abstract

Based on the structure of both biological snakes and snake-like robots and their rhythm locomotion, the theory of the cyclic inhibitory CPG is adopted as a control method to construct a neuron network model of the snake-like robot. The relation between the CPG parameters and the serpentine locomotion of the snake-like robot is defined in this paper. The validity of the serpentine locomotion controlled by the CPG model is verified through a snake-like robot model. The modulating methods of the CPG parameters are brought forward and simulated to realize the required turn motion and the reconfiguration. Moreover, we present that real snake-like robot can successfully exhibit serpentine locomotion by using controller output of the proposed architecture. Finally, the aspects of future researches are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.