Abstract

This research aimed to address two main goals in the development of a rotary magnetorheological fluid (MRF) brake: (1) design of a compact and powerful brake and (2) low friction sealing technique to reduce the off-state braking torque and prevent the fluid from leaking. Using magnetically conductive and non-conductive rings a serpentine flux path was developed to weave the magnetic flux through the MRF. Experimental results showed that, when compared to a commercial MRF brake, our 33% smaller prototype MRF brake could generate 2.7 times more torque (10.9 Nm). A ferro-fluidic sealing technique was developed that resulted in sealing in the fluid and decreased the off-state friction. Further reduction in the off-state torque was obtained by applying a reverse current pulse to collapse a residual magnetic field in the brake. A 1-DOF haptic interface employing the brake enabled crisp virtual wall collision and Coulomb friction simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.