Abstract
Shigella flexneri SFL124 (serotype Y) is a promising live oral vaccine candidate, which has been shown to be safe and immunogenic in human volunteers. To change the serotype of this vaccine strain, we inserted a serotype conversion gene cluster into the chromosome of SFL124 by using a bacteriophage-based site-specific integration system. By cloning an integrase gene ( int), an attachment site ( attP) and a glucosyl transfer gene cluster from bacteriophage SfX into a suicide vector, and subsequently introducing this construct into S. flexneri SFL124, we obtained a S. flexneri strain (designated SFL1213) expressing the serotype X somatic antigen specificity. The strain retained other characteristics of the parent strain, such as colony shape, growth rate, and Congo red binding property. Stability test showed that the serotype X O-antigen specificity in SFL1213 was 100% stable after being cultured approximately 72 successive hours under non-selective condition. In a mouse pulmonary model, the recombinant strain elicited a significant level of humoral antibodies which recognized the lipopolysaccharide (LPS) of a wild-type S. flexneri serotype X strain. The site-specific insertion system will be useful when stable expression of a cloned single copy gene is desired in the chromosome of S. flexneri vaccine candidate, SFL124.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.