Abstract

Fluorescent double retrograde-tracing studies combined with fluorescent immunostaining for serotonin were carried out to determine the potential patterns of divergence in axonal projections to autonomic and somatic motor sites from medullary raphe and parapyramidal neurons. Injections (20-60 nl) of combinations of fluorescent retrograde tracers (Fast Blue, fluoro-gold, green latex microspheres, Diamidino Yellow) were made into the intermediolateral cell column (IML) of the spinal cord and the brainstem lateral tegmental field or ventral horn of the lumbar spinal cord of male Wistar rats. The animals were perfused after a 7-10-day survival period, and the brains were removed, sectioned (50 microns), and immunostained for serotonin. Following injections of different retrograde-tracer substances into the IML of the thoracic cord and the ventral horn of the lumbar cord, 36% of the neurons with axon collateral projections to the IML and the lumbar ventral horn were serotoninergic. Following injections of different retrograde-tracer substances into the IML and the lateral tegmental field, 26% of the neurons with axon collateral projections to the IML and the lateral tegmental field were serotoninergic. Many of the medullary neurons with projections to the lateral tegmental field and the lumbar cord were located dorsal and lateral to those neurons with projections to the IML. The results indicate that serotoninergic and nonserotoninergic neurons of the midline raphe system and parapyramidal region have axon collateral branches to the IML and the lateral tegmental field or the IML and the lumbar ventral horn. These projection neurons may form the anatomical substrate for the integration of autonomic and somatic motor activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call