Abstract

The interferon-inducible RNA-specific adenosine deaminase (ADAR1) is an RNA editing enzyme implicated in the site-selective deamination of adenosine to inosine in cellular pre-mRNAs. The pre-mRNA for the rat serotonin-2C receptor (5-HT2CR) possesses four editing sites (A, B, C, and D), which undergo A-to-I nucleotide conversions that alter the signaling function of the encoded G-protein-coupled receptor. Measurements of 5-HT2CR pre-mRNA editing in vitro revealed site-specific deamination catalyzed by ADAR1. Three splice site variants, ADAR1-a, -b, and -c, all efficiently edited the A site of 5-HT2CR pre-mRNA, but the D site did not serve as an efficient substrate for any of the ADAR1 variants. Mutational analysis of the three double-stranded (ds) RNA binding motifs present in ADAR1 revealed a different relative importance of the individual dsRNA binding motifs for deamination of the A site of 5-HT2CR and synthetic dsRNA substrates. Quantitative reverse transcription-polymerase chain reaction analyses demonstrated that the 5-HT2CR pre-mRNA was most highly expressed in the choroid plexus of rat brain. However, ADAR1 and the related deaminase ADAR2 showed significant expression in all regions of the brain examined, including cortex, hippocampus, olfactory bulb, and striatum, where the 5-HT2CR pre-mRNA was extensively edited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.