Abstract

Several gastrointestinal stimuli, including some intestinal nutrients, have been shown to exert their satiating effect via activation of serotonin type-3 (5-HT(3)) receptors. The presence of lipids in the small intestine potently suppresses food intake; however, whether 5-HT(3) receptors play a role in this response has not been directly examined. Therefore, using the selective 5-HT(3) receptor antagonist ondansetron, we tested the hypothesis that duodenal infusion of lipid suppresses intake of both sucrose solution and chow through 5-HT(3) receptor activation. Rats duodenally infused with 72 and 130 mM Intralipid suppressed 1-h 15% sucrose intake by 33 and 67%, respectively. Suppression of sucrose intake by 72 mM Intralipid was significantly attenuated by ondansetron at all doses tested (0.5, 1.0, 2.0, and 5.0 mg/kg ip), whereas the lowest effective dose of ondansetron to attenuate suppression of intake by 130 mM Intralipid was 1.0 mg/kg. Furthermore, infusion of 130 mM Intralipid suppressed 1- and 4-h chow intake by 35 and 20%, respectively. Ondansetron administered as low as 0.5 mg/kg significantly attenuated 1-h Intralipid-induced suppression of chow intake and completely reversed the suppression by 4 h. Administration of ondansetron alone did not alter sucrose or chow intake compared with vehicle injection at any time. Finally, to test whether Intralipid-induced neuronal activation of the dorsal vagal complex is mediated by 5-HT(3) receptors, Fos-like immunoreactivity (Fos-LI) was quantified in ondansetron-pretreated rats following intestinal lipid infusion. Ondansetron (1 mg/kg) significantly attenuated duodenal intralipid-induced Fos-LI in the dorsal hindbrain. These data support the hypothesis that 5-HT(3) receptors mediate both satiation, as well as hindbrain neuronal responses evoked by intestinal lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.