Abstract
We have previously shown that serotonin type-3 (5-HT3) receptors mediate cholecystokinin (CCK)-induced satiation and that this effect is dependent on postoropharyngeal feedback. However, the independent contributions of gastric and intestinal feedback in 5-HT3 receptor mediation of suppression of food intake by CCK have not been determined. Using a sham-feeding preparation combined with intraduodenal sucrose infusion, we show that blockade of 5-HT3 receptors by ondansetron (1 mg/kg ip) had no effect on suppression of sham feeding by intraduodenal 15% sucrose infusion (4 ml/10 min), CCK (2 microg/kg ip) administration, or the combination of the two treatments. In separate experiments consisting of either sham-feeding rats that received gastric distension with the use of a balloon or real-feeding rats whose stomachs were distended using gastric loads of saline after the occlusion of the pylorus, we tested the hypothesis that gastric feedback signals are necessary for activation of 5-HT3 receptors. Ondansetron significantly attenuated suppression of sham sucrose intake after a 10-ml gastric balloon distension (30.5 +/- 2.2 vs. 20.2 +/- 2.2 ml, respectively) and gastric distension combined with CCK (21.9 +/- 1.4 vs. 12.0 +/- 1.7 ml, respectively). When intestinal feedback was eliminated in a real-feeding paradigm by closing the pylorus using a cuff preparation, ondansetron attenuated suppression of sucrose intake produced by a 10-ml saline gastric load (6.8 +/- 0.7 vs. 4.2 +/- 0.4 ml, respectively). Finally, when CCK (1 microg/kg) was administered in combination with a 5-ml saline gastric load in a real-feeding preparation, ondansetron significantly attenuated suppression of sucrose intake by CCK (9.0 +/- 0.9 vs. 6.3 +/- 0.5 ml, respectively), as well as the enhanced suppression of intake by CCK plus gastric load (6.9 +/- 0.6 vs. 4.6 +/- 0.5 ml, respectively). These findings demonstrate that CCK-induced activation of 5-HT3 receptors requires gastric, but not intestinal feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.