Abstract
Both Parkinson's disease (PD) and multiple system atrophy (MSA) exhibit degeneration of brainstem serotoninergic nuclei, affecting multiple subcortical and cortical serotoninergic projections. In MSA, medullary serotoninergic neuron pathology is well documented, but serotonin system changes throughout the rest of the brain are less well characterized. To use serotonin transporter [11 C]3-amino-4-(2-dimethylaminomethyl-phenylsulfaryl)-benzonitrile positron emission tomography (PET) to compare serotoninergic innervation in patients with MSA and PD. We performed serotonin transporter PET imaging in 18 patients with MSA, 23 patients with PD, and 16 healthy controls to explore differences in brainstem, subcortical, and cortical regions of interest. Patients with MSA showed lower serotonin transporter distribution volume ratios compared with patients with PD in the medulla, raphe pontis, ventral striatum, limbic cortex, and thalamic regions, but no differences in the dorsal striatal, ventral anterior cingulate, or total cortical regions. Controls showed greater cortical serotonin transporter binding compared with PD or MSA groups but lower serotonin transporter binding in the striatum and other relevant basal ganglia regions. There were no regional differences in binding between patients with MSA-parkinsonian subtype (n=8) and patients with MSA-cerebellar subtype (n=10). Serotonin transporter distribution volume ratios in multiple different regions of interest showed an inverse correlation with the severity of Movement Disorders Society Unified Parkinson's Disease Rating Scale motor score in patients with MSA but not patients with PD. Brainstem and some forebrain subcortical region serotoninergic deficits are more severe in MSA compared with PD and show an MSA-specific correlation with the severity of motor impairments. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.