Abstract

Serotonin-synthesizing and serotonin-accumulating neurons were studied in the retinas of Xenopus laevis and Bufo marinus. All previously identified cell types exhibiting serotonin-like immunoreactivity (SLI) were labeled by intravitreal injection of 5,7-dihydroxytryptamine (5,7-DHT). They included two amacrine cell types (large and small) in both species, and one bipolar cell type in Xenopus. Incubation of retinas in culture medium in the ambient light reduced SLI in amacrine cells and enhanced the labeling in bipolar cells. After incubation, some photoreceptor cell bodies and large numbers of outer segments also displayed SLI in both species. Incubation with the serotonin-uptake inhibitor, fluoxetine, reduced immunolabeling in bipolar cells and outer segments to the level in the untreated retinas. Both large SLI and 5,7-DHT-accumulating amacrine cells in Xenopus and Bufo were labeled with an antibody raised against phenylalanine hydroxylase (PH), which binds to tryptophan 5-hydroxylase, one of the synthesizing enzymes for serotonin. Small SLI and 5,7-DHT-accumulating amacrine cells in both species represented two populations, one with and the other without PH-like immunoreactivity (PH-LI). The anti-PH antibody failed to label any SLI or 5,7-DHT-accumulating bipolar cells in Xenopus. These observations indicate that all large and some small SLI amacrine cells in the retinas of Xenopus and Bufo synthesize serotonin, while other small SLI amacrine, bipolar and photoreceptor cell bodies, and outer segments only accumulate serotonin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call