Abstract

Previous physiological studies have shown that serotonin (5-HT) reciprocally modulates ON and OFF channels in the mammalian retina. This study was undertaken to determine if the serotoninergic system is exclusively associated with the rod pathway. We tested drugs specific to 5-HT3 receptor, a serotonin-gated ion channel, in both dark- and light-adapted retina. Consistent with previous studies, we demonstrated that 5-HT3 receptors modulate the light-evoked responses of ganglion cells in the dark-adapted state. Moreover, we have extended these prior studies and shown that activation of the 5-HT3 receptor is capable of completely blocking the light-evoked response of OFF-center cells whereas inactivation of the 5-HT3 receptor is capable of completely blocking the light-evoked responses of ON-center cells. In contrast, in light-adapted retinae, serotonin agents failed to have any effect on retinal processing. These data suggest that the serotoninergic system in retina is (1) specifically associated with rod-related pathways; and (2) exerts a powerful modulatory force over information transfer in the retina. Together these observations suggests that serotonin plays an important physiological role in modulating retinal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.