Abstract

BackgroundDescending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision.ResultsThe number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT1/2B/2C (methysergide), 5-HT2A (ketanserin) or 5-HT1/2A/2C/5/6/7 (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin.ConclusionsWe conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT1/2A/2C/3 receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT1/2A/2C and 5-HT1/2C receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT2A/3 receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) α-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

Highlights

  • Descending pronociceptive pathways may be implicated in states of persistent pain

  • The lesion or neural block of rostral ventromedial medulla (RVM) or periaqueductal gray (PAG) reduces the hyperalgesia induced by spinal nerve ligature [3,4], or intraplantar injection of formalin

  • Descending pronociceptive pathways may be implicated in states of persistent pain [9,10] and elucidation of their spinal mediation may be useful for discovery of new antihyperalgesic drugs

Read more

Summary

Introduction

Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. Bulbospinal pathways descend to the spinal cord to either inhibit (antinociceptive) or facilitate (pronociceptive) the transmission of nociceptive inputs (for review see [1,2]). Low intensity electrical stimulation of, or low dose of glutamate into the RVM facilitates the response of spinal nociceptive neurons to noxious inputs, whereas high intensity electrical stimulation or high dose of glutamate produces the opposite effect [8]. Descending pronociceptive pathways may be implicated in states of persistent pain [9,10] and elucidation of their spinal mediation may be useful for discovery of new antihyperalgesic drugs. Spinal serotonin produces antinociception but may be pronociceptive as well (for review see [11]).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call