Abstract

Serotonin, well known for its role in depression, has been shown to modulate immune responses. Interestingly, the plasma level of serotonin is increased in symptomatic asthmatic patients and the use of anti-depressants, known to reduce serotonin levels, provokes a decrease in asthma symptoms and an increase in pulmonary function. Thus, we tested the hypothesis that serotonin affects alveolar macrophage (AM) cytokine production, altering the cytokine network in the lung and contributing to asthma pathogenesis. AMs were treated with different concentrations of serotonin (10(-11)-10(-9) M) or 5-HT(1) and 5-HT(2) receptor agonists for 2 h prior stimulation. T helper 1 (Th1) and Th2 cytokines, prostaglandin-E(2) (PGE(2)) and nitric oxide (NO) were measured in cell-free supernatants. Serotonin significantly inhibited the production of tumour necrosis factor (TNF) and interleukin (IL)-12, whereas IL-10, NO and PGE(2) production were increased. These immunomodulatory effects of serotonin were mimicked by 5-HT(2) receptor agonist but were not abrogated by 5-HT(2) receptor antagonist, suggesting the implication of other 5-HT receptors. Inhibitors of cyclooxygenase and antibody to PGE(2) abrogated the inhibitory and stimulatory effect of serotonin on TNF and IL-10 production, respectively, whereas NO synthase inhibitor eliminated serotonin-stimulated IL-10 increase. Furthermore, PGE(2) significantly increased AM IL-10 and NO production. These results suggest that serotonin alters the cytokine network in the lung through the production of PGE(2). The reduction of Th1-type cytokine by serotonin may contribute to asthma pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call