Abstract

Efficient sensory processing of the environment is a critical function for any organism to survive and is accomplished by having neurons adapt their responses to stimuli based on behavioral context in part through neuromodulators such as serotonin (5-HT). We have recently shown that one critical function of the serotonergic system in weakly electric fish is to enhance sensory pyramidal neuron responses within the electrosensory lateral line lobe (ELL) to stimuli caused by same sex conspecifics, thereby enhancing their perception. This enhancement is accomplished by making pyramidal neurons more excitable through downregulation of potassium channels. However, the nature of the 5-HT receptors that mediate this effect is not known. Here we show that the 5-HT2 receptor antagonist ketanserin (ket) can effectively block the effects of 5-HT on pyramidal neuron excitability in vitro. Indeed, 5-HT application subsequent to ket application did not cause any significant changes in neuron excitability and responses to current injection. We further show that ket applied in vivo can block the effects of 5-HT on behavioral responses. Thus, our results strongly suggest that the previously observed effects of 5-HT on sensory processing within ELL and their consequences for behavior are mediated by 5-HT2 receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.