Abstract

Regional differences are known in the serotonin-induced modulation of neuronal activity within the amygdala. This in vitro study in rats focuses on analyzing the ionic mechanism underlying serotonin-induced depolarization in the lateral amygdala. Serotonin depolarized membrane potential by 5 mV, which is underlain by a serotonin-induced inward current at rest with a characteristic reversal potential of −105 mV. From pharmacological experiments, the 5-HT2C subtype was singled out as the receptor subtype involved. Under blockade of K+ channels by Ba2+, 5-HT induced an inward current with no reversal at the range between −50 and −130 mV, which was identified as a TRPC-like current. This current was blocked by the specific phosphatidylinositol 3-kinse (PI3-kinase) inhibitor LY294002, pointing to its dependence on PI3-kinase. The Ba2+-sensitive component, obtained by subtraction, showed a strong outward rectification and the reversal potential of K+, indicating that this component results from a serotonin-induced inhibition of G-protein coupled inwardly rectifying K+ channel (GIRK) current. By wortmannin, an inhibitor of both PI3-kinase and PI4-kinase, a serotonin-induced phosphatidylinositol 4,5-bisphosphate (PIP2) depletion was revealed to underlie GIRK inhibition. Thus, the serotonin-induced current turned out to be caused by a combined occurrence of GIRK inhibition and PI3-kinase-dependent TRPC-like current. With serotonergic modulation, all these mechanisms should be recruited in lateral amygdala principal neurons and likely contribute to generation of region-specific neuronal activity patterns within the amygdala, which may at least partly implement its required role in fear and anxiety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.