Abstract

Serotonin (5-HT) plays a critical role in several gastrointestinal functions in vertebrates. In teleosts lacking enterochromaffin cells, intestinal 5-HT originates from serotonergic enteric neurons. In the present study, the foregut of a stomachless teleost, the goldfish (Carassius auratus), was used to evaluate the in vitro effect of 5-HT on fish intestinal motility. We also studied the role of melatonin (MEL), an indoleamine sharing the biosynthetic pathway with 5-HT, as regulator of serotonergic activity. An organ bath system, with longitudinal strips from the goldfish intestinal bulb attached to an isometric transducer was used to record foregut smooth muscle contractions. Concentration-dependent curves of the contractile response exerted by 5-HT and its agonists, 5-methoxytryptamine (5-MT) and 5-carboxamidotryptamine (5-CT), suggest a receptor-mediated action, supported by the blockade by a general 5-HT antagonist, methysergide. The 5-HT-induced contraction was abolished in the presence of atropine, revealing the involvement of cholinergic transmission in gut actions of 5-HT. Furthermore, MEL inhibited the contractile effect of 5-HT and its agonists by up to 50%, which was counteracted by MEL antagonists. We can provisionally propose that at least two different 5-HT receptor subtypes are involved in fish intestinal motility, a 5-HT₄-like (5-MT-preferring) and a 5-HT₇-like (5-CT- and fluphenazine-sensitive) receptor. In summary, our results indicate that 5-HT regulates the contractile activity of goldfish foregut through specific receptors located in cholinergic neurons, and that MEL can modulate these serotonergic actions through high-affinity membrane receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.