Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is a regulatory factor in motility of the gastrointestinal tract including the esophagus. Although we proposed that vagal cholinergic and mast cell-derived non-cholinergic components including serotonin coordinately shorten the esophagus, the precise mechanism of serotonin-induced contractions in the suncus esophagus is still unclear. Therefore, the aims of this study were to determine characteristics of contractile responses induced by serotonin and to identify 5-HT receptor subtypes responsible for regulating motility in the suncus esophagus. An isolated segment of the suncus esophagus was placed in an organ bath, and longitudinal or circular mechanical responses were recorded using a force transducer. Serotonin evoked contractile responses of the suncus esophagus in the longitudinal direction but not in the circular direction. Tetrodotoxin did not affect the serotonin-induced contractions. Pretreatment with a non-selective 5-HT receptor antagonist or double application of 5-HT1 and 5-HT2 receptor antagonists blocked the serotonin-induced contractions. 5-HT1 and 5-HT2 receptor agonists, but not a 5-HT3 receptor agonist, evoked contractile responses in the suncus esophagus. The findings suggest that serotonin induces contractile responses of the longitudinal smooth muscle in the muscularis mucosae of the suncus esophagus that are mediated via 5-HT1 and 5-HT2 receptors on muscle cells. The serotonin-induced contractions might contribute to esophageal peristalsis and emetic response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.