Abstract

Synaptic plasticity in the hippocampal Cornu Ammonis (CA) subfield, CA2, is tightly regulated. However, CA2 receives projections from several extra-hippocampal modulatory nuclei that release modulators that could serve to fine-tune plasticity at CA2 synapses. Considering that there are afferent projections from the serotonergic median raphe to hippocampal CA2, we hypothesized that the neuromodulator serotonin (5-hydroxytryptamine; 5-HT) could modulate CA2 synaptic plasticity. Here, we show that bath-application of serotonin facilitates the persistence of long-term depression (LTD) at the CA3 Schaffer collateral inputs to CA2 neurons (SC-CA2) when coupled to a weak low frequency electrical stimulation, in acute rat hippocampal slices. The observed late-LTD at SC-CA2 synapses was protein synthesis- and N-methyl-D-aspartate receptor (NMDAR)-dependent. Moreover, this late-LTD at SC-CA2 synapses paves way for the associative persistence of transient forms of LTD as well as long-term potentiation to long-lasting late forms of plasticity through synaptic tagging and cross-tagging respectively, at the entorhinal cortical synapses of CA2. We further observe that the 5-HT-mediated persistence of activity-dependent LTD at SC-CA2 synapses is blocked in the presence of the brain-derived neurotrophic factor scavenger, TrkB/Fc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call