Abstract

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5-20 microM) reversibly decreased integrated burst amplitude by approximately 45% (P < 0.05); burst frequency decreased in a dose-dependent manner with 20 microM abolishing bursts in 9 of 13 preparations (P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT(1A) agonist, but not a 5-HT(1B) agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 microM) washout, frequency rebounded to levels above the original baseline for 40 min (P < 0.05) and remained above baseline for 2 h. A 5-HT(3) antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT(3) agonist (phenylbiguanide) increased frequency during and after bath application (P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase (P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT(3) receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call