Abstract
When trapped in a physical restraint, animals must select an escape strategy to increase their chances of survival. After falling into an inescapable trap, they react with stereotypical behaviors that differ from those displayed in escapable situations. Such behaviors involve either a wriggling response to unlock the trap or feigning death to fend off a predator attack. The neural mechanisms that regulate animal behaviors have been well characterized for escapable situations but not for inescapable traps. We report that restrained vinegar flies exhibit alternating flailing and immobility to free themselves from the trap. We used optogenetics and intersectional genetic approaches to show that, while broader serotonin activation promotes immobility, serotonergic cells in the ventral nerve cord (VNC) regulate immobility states majorly via 5-HT7 receptors. Restrained and freely moving locomotor states are controlled by distinct mechanisms. Taken together, our study has identified serotonergic switches of the VNC that promote environment-specific adaptive behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.