Abstract

Serotonin, a well-known neurotransmitter in mammals, has been linked to a number of neurological and gastrointestinal disorders. One of these disorders, serotonin syndrome, is a potentially deadly condition caused by increased levels of serotonin in the extracellular space. Information on the neurochemical effects of serotonin syndrome on serotonin catabolism is lacking, particularly in relation to the enteric system of the gastrointestinal tract. Here the catabolism of serotonin is monitored in rats with pharmacologically induced serotonin syndrome, with the catabolites characterized using a specialized capillary electrophoresis system with laser-induced native fluorescence detection. Animals induced with serotonin syndrome demonstrate striking increases in the levels of serotonin and its metabolites. In the brain, levels of serotonin increased 2- to 3-fold in animals induced with serotonin syndrome. A major serotonin metabolite, 5-hydroxyindole acetic acid, increased 10- to 100-fold in experimental animals. Similar results were observed in the gastrointestinal tissues; in the small intestines, serotonin levels increased 4- to 5-fold. Concentrations of 5-hydroxyindole acetic acid increased 32- to 100-fold in the intestinal tissues of experimental animals. Serotonin sulfate showed surprisingly large increases, marking what may be the first time the compound has been reported in rat intestinal tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.