Abstract

Bioamines act as a pivotal part in the regulation of aggressive behavior in animals as a type of neuroendocrine, but the patterns of how they regulate aggressiveness in crustaceans are still unclear due to species-specific responses. To determine the effects of serotonin (5-HT) and dopamine (DA) on the aggressiveness of swimming crabs (Portunus trituberculatus), we quantified their behavioral and physiological characteristics. The results showed that an injection of 5-HT at 0.5 mmol L−1 and 5 mmol L−1 could significantly enhance the aggressiveness of swimming crabs, as well as an injection of DA at 5 mmol L-1. The regulation of 5-HT and DA on aggressiveness is dose-dependent, and these two bioamines have different concentration thresholds that can trigger aggressiveness changes. 5-HT could up-regulate the 5-HTR1 gene expression and increase lactate content at the thoracic ganglion as the aggressiveness enhances, suggesting that 5-HT may activate related receptors and neuronal excitability to regulate aggressiveness. As a result of DA injection at 5 mmol L-1, lactate content in the chela muscle and hemolymph increased, glucose content in the hemolymph increased, and the CHH gene was significantly up-regulated. Pyruvate kinase and hexokinase enzyme activities in the hemolymph increased, which accelerated the glycolysis process. These results demonstrate that DA regulates the lactate cycle, which provides substantial short-term energy for aggressive behavior. Both 5-HT and DA can mediate aggressive behavior in the crab by activating calcium regulation in muscle tissue. We conclude that the enhancement of aggressiveness is a process of energy consumption, in which 5-HT acts on the central nervous system to induce aggressive behavior, and DA affects muscle and hepatopancreas tissue to provide a large amount of energy. This study expands upon the knowledge of regulatory mechanisms of aggressiveness in crustaceans and offers a theoretical foundation for enhancing crab culture management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call