Abstract

Acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) converts intracellular free cholesterol into cholesterol ester for storage in lipid droplets and plays an important role in the formation of macrophage-derived foam cells in atherosclerotic lesions. Serotonin (5-HT), a potent vasoconstrictor that is released from activated platelets, increases uptake of oxidized low-density lipoprotein (LDL) by macrophages, leading to foam cell formation, and contributes to the development of atherosclerotic plaque. However, it is not yet known whether 5-HT affects ACAT-1 expression in human monocyte–macrophages as the molecular mechanism of enhanced foam cell formation by 5-HT remains unclear. We examined the effects of 5-HT on ACAT-1 expression during differentiation of cultured human monocytes into macrophages. Expression of ACAT-1 protein but not 5-HT 2A receptor increased in a time-dependent manner. 5-HT increased ACAT activity in a concentration-dependent manner after 7 days in primary monocyte culture. Immunoblotting analysis showed that 5-HT at 10 μM increased ACAT-1 protein expression level by two-fold, and this effect was abolished completely by a 5-HT 2A receptor antagonist (sarpogrelate), its major metabolite (M-1), a G protein inactivator (GDP-β-S), a protein kinase C (PKC) inhibitor (rottlerin), a Src family inhibitor (PP2), or a mitogen-activated protein kinase (MAPK) kinase inhibitor (PD98059). Northern blotting analysis indicated that among the four ACAT-1 mRNA transcripts (2.8-, 3.6-, 4.3-, and 7.0-kb), the levels of the 2.8- and 3.6-kb transcripts were selectively up-regulated by ∼1.7-fold by 5-HT (10 μM). The results of the present study suggested that 5-HT may play a crucial role in macrophage-derived foam cell formation by up-regulating ACAT-1 expression via the 5-HT 2A receptor/G protein/c-Src/PKC/MAPK pathway, contributing to the progression of atherosclerotic plaque.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.