Abstract
Serotonin (5HT) is a neurotransmitter synthesized in serotonergic neurons of the central nervous system and in the enterochromaffin cells of the gastrointestinal tract. 5HT regulates growth and maturation of some cerebral regions in the developing brain as well as the secretion of pituitary growth hormone. This hormone is necessary for development and growth through the stimulation of insulin-like growth factor synthesis. The precursor of 5HT, tryptophan (Trp), is an essential amino acid, since the human organism is unable to synthesize it and it is assumed only through diet. The aim of our study was to analyze how a high-tryptophan diet in pregnant rats affects growth and survival of pups until weaning. We monitored the number and weight of pups until weaning. Then, we detected serotonin and growth hormone levels in whole blood by ELISA of surviving pups at the end of the lactation period. We also analyzed by means of immunohistochemistry and Western blot the expression of serotonin in rat gastric tissue and the morphological structure of skeletal muscle tissue of both control and experimental pups. Hyperserotonemia and very low levels of growth hormone were detected in experimental pups compared to controls. Immunohistochemistry demonstrated a strong serotonin expression in stomach samples confirming that a high intake of tryptophan increases the production of serotonin in enterochromaffin cells, thereby resulting in hyperserotonemia in pups. These data were also strengthened by Western blot analysis. Histological alterations of skeletal muscle fibers in experimental pups were found and showed that in experimental samples the muscle tissue demonstrated deleterious alterations, being less developed and defined. Our data suggest that a high-tryptophan diet in pregnant rats induces hyperserotonemia in the fetus. Hyperserotonemia results in an excess of serotonin in the brain where it has a negative influence on development of serotonergic neurons and consequently on growth hormone production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.