Abstract

SUMMARYMany studies have explored how neuromodulators affect synaptic function, yet little is known about how they modify computations at the microcircuit level. In the dorsal cochlear nucleus (DCN), a region that integrates auditory and multisensory inputs from two distinct pathways, serotonin (5-HT) enhances excitability of principal cells, predicting a generalized reduction in sensory thresholds. Surprisingly, we found that when looked at from the circuit level, 5-HT enhances signaling only from the multisensory input, while decreasing input from auditory fibers. This effect is only partially explained by an action on auditory nerve terminals. Rather, 5-HT biases processing for one input pathway by simultaneously enhancing excitability in the principal cell and in a pathway-specific feed-forward inhibitory interneuron. Thus, by acting on multiple targets, 5-HT orchestrates a fundamental shift in representation of convergent auditory and multisensory pathways, enhancing the potency of non-auditory signals in a classical auditory pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.