Abstract

Hormone–neurotransmitter interactions form an important link through which hormones influence a variety of behavioral processes. Typically, sexual behavior is dimorphic with males mounting receptive females. In the all-female lizard species Cnemidophorus uniparens, individuals display both male-like pseudocopulation and female-like receptivity. These respective behavioral states are correlated with high circulating concentrations of progesterone following ovulation and of estrogen preceding it. In sexual species, serotonin is involved in male-typical mounting, and, as reported here, in male-like pseudosexual behavior in this unisexual species. In the first study, C. uniparens were ovariectomized and treated systemically with exogenous androgen, a hormonal regimen that results in individuals displaying only male-like pseudosexual behavior. An increase in serotonin levels in the preoptic area coupled with the suppression of male-like pseudocopulation was observed in androgen-treated lizards injected with 5-hydroxytryptophan (the precursor of serotonin) and clorgyline (a monoamine oxidase inhibitor) compared to vehicle-treated controls. Our second experiment involved ovariectomizing lizards and either injecting them with estradiol or implanting them with either an empty (Blank) or a progesterone- or testosterone-containing Silastic capsule. Treatment with para-chlorophenylalanine (an inhibitor of tryptophan hydroxylase) facilitated male-like pseudosexual behavior depending on the circulating hormonal milieu and decreased serotonin levels in the preoptic area. Our data suggest that serotonin is inhibitory to male-like pseudosexual behavior in C. uniparens but more importantly that the hormonal environment modulates the serotonin system at the level of the preoptic area, with the serotonergic system then establishing behavioral thresholds that allow for this behavior to be “gated”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.